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While the d’Alembert-Lagrange principle has been widely used to derive equations of state for

dynamical systems under holonomic (geometric) and non-integrable linear-velocity (kinematic)

constraints, its application to general kinematic constraints with a general velocity and

acceleration-dependence has remained elusive, mainly because there is no clear method, whereby

the set of linear conditions that restrict the virtual displacements can be easily extracted from the

equations of constraint. We show how this limitation can be resolved by requiring that the states

displaced by the variation are compatible with the kinematic constraints. A set of linear auxiliary

conditions on the displacements is established and adjoined to the d’Alembert-Lagrange equation

via Lagrange’s multipliers to yield the equations of state. As a consequence, new transpositional

relations satisfied by the velocity and acceleration displacements are also established. The theory is

tested for a quadratic velocity constraint and for a nonholonomic penny rolling and turning upright

on an inclined plane. VC 2011 American Association of Physics Teachers.

[DOI: 10.1119/1.3563538]

I. INTRODUCTION

There has been growing interest in the analysis of nonholo-
nomic systems.1–5 Recent developments in robotics, intelligent
transportation systems, cruise controls, sensors, feedback con-
trol, servomechanisms, and other advanced technologies make
possible interesting systems operating under nonlinear velocity
and acceleration constraints.6–9 A simple example5 is a car
moving on a road of varying slope, with a cruise control that
maintains the speed constant. Graduate texts10–19 on analytical
dynamics primarily deal with the fundamental d’Alembert-
Lagrange principle, which involves virtual displacements dr
to the particle’s position rðtÞ with constraints held fixed during
the displacement and which yields the familiar Lagrange’s
equations of state. Although Lagrange20 designed it with only
geometric constraints in mind, the d’Alembert-Lagrange prin-
ciple can also be applied10–19 to kinematic rolling constraints
that are linear in the velocity, whose existence Lagrange did
not anticipate. Lagrange assumed that independent coordinates
could always be chosen for any system once the constraints
were included. Although Euler had already studied21 the
small-oscillation dynamics of a rolling rigid body moving
without slipping on a horizontal plane, Hertz, by coining the
term “nonholonomic,” was the first to highlight the essential
difference between geometric (holonomic) constraints on the
configuration and non-integrable kinematic (nonholonomic)
constraints that directly restrict the velocities=accelerations of
the state.22 Gauss23 had already provided a very different prin-
ciple of least constraint11–14,24 based on virtual displacements
to the acceleration alone, keeping the state (r; r

�
) fixed at time

t. The Gauss principle was later realized25–27 to be applicable
to both holonomic and nonholonomic systems and resulted in
the Gibbs–Appell equations,12,24–28 which, in turn have been
shown to lead to Lagrange’s equations of state for nonholo-
nomic systems.29,30

Standard texts10–19 confine their discussion of nonholo-
nomic systems to linear-velocity constraints. Direct applica-
tion of the d’Alembert-Lagrange principle to general
velocity and acceleration constraints has remained elusive
until recently,30 because of the difficulty of extracting the
conditions restricting the displacements dr from the equa-
tions of constraint.

In this paper, we outline how the d’Alembert-Lagrange
principle can successfully treat nonholonomic systems under
general velocity and acceleration constraints. The theory will
be tested for a true non-integrable quadratic velocity con-
straint and for the interesting and instructive example of the
nonholonomic penny, which rolls and turns upright on an
inclined plane. The full solution, which has not been available,
will be treated in detail and yields beautiful illustrations of the
various orbits. The theory is presented at a level accessible for
instructors and graduate students of classical dynamics.

II. d’ALEMBERT-LAGRANGE PRINCIPLE,

EXISTING APPLICATIONS, AND PROBLEM

The classical state specified by the representative point
qðtÞ ¼ fqjg and _qðtÞ ¼ f _qjg in the state space of a system at
time t of N-particles with Lagrangian L and generalized coor-
dinates qj ðj ¼ 1; 2;…; n ¼ 3NÞ is, in principle, determined
by the solution of

Lj �
d

dt

@L

@ _qj

� �
� @L

@qj

� �
¼ QNP

j þ QC
j ; (1)

obtained by setting the Lagrangian derivative Lj equal to the
known applied non-potential forces QNP

j plus the unknown
forces QC

j , which constrain the system. The Lagrangian
Lðq; _q; tÞ in Eq. (1) is unconstrained, because it is written in
terms of the 2n generalized coordinates qj and velocities _qj

for the unconstrained system. Because the constraint forces
QC

j are generally unknown, Eq. (1) cannot be solved, except
under the special circumstance when the QC

j are “ideal,” that
is, when the summed virtual work QC

j dqj done in the virtual
displacements dqjðtÞ from the unknown physical configura-
tion q(t) vanishes. The constrained system then evolves with
time so that the summed projections

ðLj � QNP
j Þdqj ¼ QC

j dqj ¼ 0;

ðd0Alembert � LagrangeprincipleÞ; (2)

onto dqj along the q-surface are zero. The summation con-
vention for repeated indices j is adopted.
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Equation (2) is the d’Alembert-Lagrange equation, a funda-
mental principle of analytical dynamics established by
Lagrange20 and based on the J. Bernoulli principle of virtual
work in statics and the d’Alembert principle for a single rigid
body. The coefficient ðLj � QNP

j Þ of dqj is the projection
ðmi€ri � FiÞ: (@ri=@qj) of Newton’s equations summed over
all N particles at positions ri onto the various tangent vectors
q̂j � @ri=@qj along the direction of increasing qj on the
multi-surface q ¼ fqjg. The Newtonian equivalent of Eq. (2)
is ðmi€ri � FiÞ � dri ¼ 0, where the forces Fi exclude the con-
straint forces. Equation (2), is therefore limited to these
“workless” ideal constraints QC

j , and applies to a wide class
of problems that can be solved without direct knowledge of
the forces actuating the constraints. The n ¼ 3N values of
dqj are, in general, not all independent of each other but are
linked by conditions restricting the displacements, so that the
coefficient (Lj � QNP

j ) of each dqj in Eq. (2) cannot be arbi-
trarily set to zero.

Although Eq. (2) is, in principle, valid for all ideal con-
straints, its application has been limited to geometric and lin-
ear-velocity constraints, because the relations restricting the
displacements dqj are easy to determine in the linear form
required for adjoining them to the already linear set in Eq. (2)
via Lagrange’s multiplier method. The d’Alembert-Lagrange
theory10–19 has therefore been traditionally confined to dy-
namical systems with c holonomic (geometric) constraints

fkðq; tÞ ¼ 0; ðk ¼ 1; 2;…; cÞ; (3)

which can be written in velocity form as

_fkðq; tÞ ¼
@fk
@qj

� �
_qj þ

@fk
@t
¼ 0; ðk ¼ 1; 2;…; cÞ; (4)

and those with c nonholonomic (kinematic) constraints

_hkðq; tÞ ¼ g
ð1Þ
k ð _q; q; tÞ ¼ Akjðq; tÞ _qj þ Bkðq; tÞ ¼ 0; (5)

with only a linear-velocity dependence. Because virtual
displacements dq coincide18 with possible displacements dq
in the limit of frozen constraints when ð@fk=@tÞdt ¼ 0
and ð@hk=@tÞdt ¼ 0, they therefore satisfy the linear set of
conditions,

dfk ¼
@fk
@qj

� �
dqj ¼ 0 (6a)

dhk ¼
@g
ð1Þ
k

@ _qj

 !
dqj ¼ 0 (6b)

for holonomic constraints and linear-velocity constraints,
respectively. The frozen constraint short-cut derivation of
Eq. (6) follows from the basic definition of virtual displace-
ments to the state in Sec. IV. The c constraints in Eq. (3)
may be used ab initio to reduce the number of coordinates to
a set of m ¼ n� c independent degrees of freedom and L to
a reduced Lagrangian L0 based on the free coordinates
(qi; i ¼ 1; 2;…;m). Then Eq. (2) yields L0i ¼ QNP

i . Alterna-
tively, the displacement conditions in Eq. (6) may often be
used to reduce Eq. (2) to a sum over only independent
displacements, whose coefficients may then be set to zero.
The general procedure, however, is to adjoin the sets of aux-
iliary conditions, Eqs. (6), via c Lagrange’s multipliers kk to

Eq. (2), where the dqj is effectively regarded as all independ-
ent, so as to provide the standard equations of state10–19

ðLj � QNP
j Þ ¼ QC

j ¼ kk
@fk

@qj

� �
; (7a)

ðLj � QNP
j Þ ¼ QC

j ¼ kk
@g
ð1Þ
k

@ _qj

 !
; (7b)

to be solved in conjunction with Eqs. (3) or (5), respectively.
On noting that the coefficients of €qj in €fk and €hk are the coef-
ficients of dqj and kk in Eqs. (6) and (7), respectively, it is
tempting to suggest31 for general velocity constraints gk that
the acceleration coefficient (@gk=@ _qj) in _gk be taken corre-
spondingly as the dqj coefficient of the nonholonomic condi-
tions. Then Eqs. (6b) and (7b) hold with g

ð1Þ
k replaced by gk.

The argument is however axiomatic, requires explicit proof
and cannot cover general acceleration constraints.

The commutation rule d _qj ¼ ðdqjÞ0, where _qj ¼ dqj=dt and
ðdqjÞ0 ¼ dðdqjÞ=dt, is traditionally accepted for the calcula-
tion of the velocity displacements d _qj in Lagrangian dynam-
ics. Under this rule and displacement conditions, Eqs. (6),
we can show (Sec. IV) that d _fk ¼ 0 and dg

ð1Þ
k 6¼ 0, which

imply that the displaced state ðqþ dq; _qþ d _qÞ is compatible
(possible) with geometric constraints Eq. (3) but is not com-
patible with velocity constraints, Eq. (5).3,14,16

Application of Eq. (2) to nonholonomic systems under
constraints with a general dependence on velocity and accel-
eration has so far remained elusive because the displacement
conditions to be adjoined to Eq. (2) prove impossible to
determine from basic procedures, while the conventional
commutation rule remains in operation.

We shall show how the needed displacement conditions
can be obtained from the property of possible displaced
states, with the result that Eq. (2) may be applied to general
kinematic constraints. As a consequence, new transpositional
rules that relate the d _qj to ðdqjÞ0 for velocity constraints and
the d€qj to ðd _qjÞ0 for acceleration constraints are established.
Under these rules, the virtual displacements in Eq. (2) can
now be taken to be compatible with the nonholonomic
constraints.

III. HOMOGENEOUS VELOCITY CONSTRAINTS:

EQUATIONS OF STATE

Before addressing whether or not d’Alembert-Lagrange
principle is capable of covering general kinematic
constraints, consider first the simpler case of how the
d’Alembert-Lagrange principle can be applied to velocity

constraints g
ðpÞ
k that are homogeneous to degree p in the

velocities _qj. An example is the Benenti problem32 in which
two identical rods move on a plane under no external forces
in such a way that the rods and the velocities of the mid-
points remain parallel. The constraint may be expressed as

g
ð2Þ
1 ¼ _x1 _y2 � _x2 _y1 ¼ 0; (8)

which is non-integrable and quadratic in the velocity.
Another example is the Appell–Hamel problem.19,27 On dif-

ferentiating the property g
ðpÞ
k ða _q; q; tÞ ¼ apg

ðpÞ
k ð _q; q; tÞ of gen-

eral homogeneous functions with respect to a and setting
a ¼ 1, we have
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@g
ðpÞ
k

@ _qj

 !
_qj ¼ pg

ðpÞ
k ¼ 0; (9)

which is the Euler theorem for functions homogeneous in _qj.
The set of linear conditions,

@g
ðpÞ
k

@ _qj

 !
dqj ¼ 0; (10)

on the displacements readily follows in the linear form
required for adjoining to Eq. (2). When Eq. (10) is adjoined
to Eq. (2), the dqj in effect is regarded as all independent to
give the j ¼ 1; 2;…; n equations of state

Lj ¼ QNP
j þ kk

@g
ðpÞ
k

@ _qj

 !
; (11)

and the forces QC
j ¼ kkð@g

ðpÞ
k =@ _qjÞ actuating the homoge-

nous velocity constraints. By using Hertz’ principle of least
curvature (which is a geometrical version11 of Gauss’ princi-
ple of least constraint), Rund also derived Eq. (11) but only
after a lengthy geometrical analysis.33

Cases: (a) For exactly integrable constraints, g
ð1Þ
k ¼ _fk and

@ _fk=@ _qj ¼ @fk=@qj. In this case, Eqs. (10) and (11) reproduce
Eqs. (6a) and (7a) for holonomic systems. (b) Eq. (5) with
Bk ¼ 0 and Eqs. (6b) and (7b) are simply the (p¼ 1) case of
Eqs. (9)–(11). (c) The solution of Eq. (11) under the Benenti
constraint Eq. (8) reveals that k1 ¼ 0. The force of constraint
is therefore zero, and the motion of the two particles given
parallel velocities initially is free, in accord with intuition.
(d) The displacement condition Eq. (10) will also agree with
that derived below for general velocity constraints.

IV. GENERAL VELOCITY CONSTRAINTS

Direct application of the d’Alembert-Lagrange principle
in Eq. (2) to systems under nonlinear kinematic constraints,

gkð _q; q; tÞ ¼ 0 ðk ¼ 1; 2;…; cÞ; (12)

with a general velocity-dependence has remained elusive
because the traditional procedures used to obtain the dis-
placement conditions Eqs. (6) and (10) for holonomic, lin-
ear-velocity and homogeneous velocity constraints were not
viable.

It is sometimes thought that a virtual displacement takes
place instantaneously at a frozen time t. Then its time deriva-
tive ðdqjÞ0 will not exist. This misconception is resolved as
follows. From the infinity of possible velocity sets
f _qj1g; f _qj2g;… which satisfy the constraint Eq. (12), there is
only one set f _qjg that is realized in the actual motion as
determined by the equations of state. Possible position and
velocity displacements dqj ¼ _qjdt, dqj1 ¼ _qj1dt, d _qj ¼ €qjdt,
and d _qj1 ¼ €qj1dt between dynamically possible adjacent
states during interval dt therefore satisfy

dgk ¼
@gk

@ _qj

� �
d _qj þ

@gk

@qj

� �
dqj þ

@gk

@t

� �
dt ¼ 0: (13)

The virtual displacements dqj and d _qj to position and veloc-
ity are defined as the differences

dqj ¼ dqj1 � dqj ¼ ð _qj1 � _qjÞ dt; (14a)

d _qj ¼ d _qj1 � d _qj ¼ ð€qj1 � €qjÞ dt; (14b)

of two possible displacements in position and velocity,
respectively, during interval dt. With the aid of Eq. (13), the
displacements therefore satisfy

dgk ¼
@gk

@ _qj

� �
d _qj þ

@gk

@qj

� �
dqj ¼ 0; (15)

the condition for possible virtually displaced states. Compar-
ison of Eqs. (13) and (15) shows that virtual displacements
dqj and d _qj then coincide with possible displacements under
frozen constraints ð@gk=@tÞdt ¼ 0 and may be regarded in
effect as displacements between two simultaneous possible
states. The appropriate shortcut is that dqj is taken not with
time frozen but with the constraints frozen. The displace-
ment conditions Eq. (6) are recovered upon using the basic
definition Eq. (14a) in dfk and dhk, respectively.

In terms of the Lagrangian derivative,

gkj �
@gk

@ _qj

� �0
� @gk

@qj
; (16)

of the constraint in Eq. (12), Eq. (15) can be recast as the
transpositional relation

dgk �
@gk

@ _qj
dqj

� �0
¼ @gk

@ _qj

� �
d _qj � dqj

� �0h i
� gkj dqj;

(17)

derived without any condition imposed on the function gk.
In Sec. IV C, Eq. (17) is reduced to a new transpositional
relation, which provides the time derivative ðdqjÞ0 appropri-
ate to general velocity constraints. However, we first note
the following important consequences of Eq. (17).

A. Deductions

(1) For exactly integrable velocity constraints, we have
gk ¼ _fkðq; tÞ. The Lagrangian derivative _fkj vanishes
because ð@ _fk=@ _qjÞ0 ¼ ð@fk=@qjÞ0 ¼ ð@ _fk=@qjÞ. Then Eq.
(17) reduces to the transpositional rule

d _fk �
d

dt
dfkð Þ ¼ @fk

@qj

� �
d _qj �

d

dt
ðdqjÞ

� �
: (18)

The known condition dfk ¼ 0 of Eq. (6a) on the displace-
ments and the condition d _fk ¼ 0 for possible displaced
states ðqþ dq; _qþ d _qÞ show that the commutation rule,

d _qj ¼
d

dt
ðdqjÞ ðTraditional commutation ruleÞ; (19)

is satisfied for exactly integrable constraints. Otherwise,
Eq. (19) can be independently proven30 from first princi-
ples for all dependent and independent coordinates of
holonomic systems so that the combination of Eqs. (6a)
and (19) implies d _fk ¼ 0 for possible displaced states.
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(2) Under condition Eq. (6b) for linear-velocity constraints

and commutation rule Eq. (19), Eq. (17) yields dg
ð1Þ
k

¼ �g
ð1Þ
kj dqj. The displaced states are, therefore, not pos-

sible, unless g
ð1Þ
kj or the sum g

ð1Þ
kj dqj vanish. But g

ð1Þ
kj ¼ 0

is satisfied only by exactly integrable constraints3,14,16

gk ¼ _fkðq; tÞ, which do not require an integrating factor.

And the sum g
ð1Þ
kj dqj ¼ 0 is satisfied only by integrable

constraints,30 which require an integrating factor. While
Eq. (19) is in operation, possible displaced states are
realised only for integrable constraints.

(3) The traditional commutation rule Eq. (19) is therefore
inconsistent with possible displaced states in non-holo-
nomic systems. Because constrained variational princi-
ples rely on possible variational paths, they cannot be
constructed with validity for ideal nonholonomic sys-
tems. If displaced states were (mistakenly) taken as pos-
sible under the commutation rule, the dqj would satisfy

dgk ¼
@gk

@ _qj
dqj

� �0
�gkjdqj ¼ 0: (20)

Now apply the constrained Hamilton’s least-action princi-
ple d

Ð t2
t1
ðL� lkgkÞ dt ¼ 0 or, equivalently, the condition

Eq. (20) adjoined to Hamilton’s integral principle,
Ð t2

t1
Lj

dqj dt ¼ 0. The following equations of state:

Lj ¼ _lk

@gk

@ _qj

� �
þ lkgkj; (21)

are then obtained.34–38 Equations (21), first proposed by
Ray34 but then retracted,34 were later re-discovered37,38 as
the vakonomic equations (of the variational axiomatic kind)
or the variational nonholonomic equations.2 They remain ax-
iomatic without basic theoretical justification1,3,15,30,34–36

and do not reproduce either the correct state Eqs. (7) for lin-
ear and homogeneous velocity constraints or Eq. (29)
obtained below for general gk. Different solutions are
obtained38 for the “vakonomic” and “nonholonomic” ice-
skaters on an inclined plane. The essential reason for failure
of Eq. (21) is that Eq. (19) and dgk ¼ 0 can never be simulta-
neously satisfied for non-integrable constraints. Also, Eq.
(20) does not yield the correct conditions Eqs. (6b) and (10)
or Eq. (28) derived below for general gk. The physical state
of a nonholonomic system does not result from a stationary
value of the constrained action.

B. Displacement conditions and equations of state

A desirable property in analytical dynamics is that the dqj-
variations result in possible dynamically displaced states.
Instead of using Eq. (12) directly for the velocity constraint,
we note that use of its linear-acceleration form,

_gk ¼
@gk

@ _qj

� �
€qj þ

@gk

@qj

� �
_qj þ

@gk

@t
¼ 0; (22)

automatically guarantees possible displaced states, because it
leads directly to the correct (tangency) condition

dgk ¼
@gk

@ _qj

� �
d _qj þ

@gk

@qj

� �
dqj ¼ rQgk � dQ ¼ 0; (23)

for possible states. Because rQ gk is normal to gk, the dis-
placement dQ of the representative point Q ¼ ðq; _qÞ in state
space is tangential to the gk-surface and the displaced state
lies on the manifold of velocity constraints gk. Partition the n
states with j ¼ 1; 2;…; n into m-independent states (qi; _qi),
where i ¼ 1; 2;…;m and c-dependent states (gd; _gd), where
gd ¼ qmþd and d ¼ 1; 2;…; c, so that Eq. (22) decomposes
into

_gk ¼ Gkd €gd þ
@gk

@ _qi

� �
€qi þ

@gk

@qj

� �
_qj þ

@gk

@t

� �
¼ 0; (24)

where Gkdðq; _q; g; _g; tÞ ¼ @gk=@ _gd are the elements of the
matrix G ¼ fGkdg, assumed to be positive definite (inverti-
ble). The solutions of Eq. (24) for the dependent accelera-
tions are therefore

€gd ¼ � ~Gdr
@gr

@ _qi

� �
€qi þ

@gr

@qj

� �
_qj þ

@gr

@t

� �
; (25)

where the elements ~Gdr of the matrix ~G, the inverse of G, sat-
isfy Gkd

~Gdr ¼ dkr, with k; r; d ¼ 1; 2;…; c. Although the
coordinate function gd ¼ gdðq1; q2;…; qm; tÞ is unknown for
non-integrable Eq. (12), the dependent displacements

dgd ¼
@gd

@qi

� �
dqi ¼

@ _gd

@ _qi

� �
dqi ¼

@€gd

@€qi

� �
dqi;

ði ¼ 1; 2;…;mÞ; (26)

can be now obtained in terms of the independent dqi from
Eq. (25) to give

dgd ¼ � ~Gdr
@gr

@ _qi

� �
dqi: (27)

Multiplication by Gkd, followed by a d-summation, yields
the relation

@gk

@ _qj

� �
dqj �

@gk

@ _qi

� �
dqi þ

@gk

@ _gd

� �
dgd ¼ 0;

ðj ¼ 1; 2;…; nÞ; (28)

where gd reverts back to its original qmþd . In geometrical
terms, the tangency condition Eqs. (22) or (23) for possible
displaced states provides the auxiliary conditions, Eq. (28),
on the displacements under the general velocity constraints in
Eq. (12). Equation (28), when applied to exactly integrable
constraints gk ¼ _fk ¼ 0, provides the original displacement
condition ð@ _fk=@ _qjÞdqj ¼ ð@fk=@qjÞdqj ¼ 0, in agreement
with Eq. (6a). Equation (28) also covers Eqs. (6b) and (10)
obtained via different procedures.

On adjoining the required set of linear restrictions, Eq.
(28), on the displacements to the d’Alembert-Lagrange prin-
ciple, Eq. (2), the dqj is effectively regarded as all free, so
that

Lj ¼
d

dt

@L

@ _qj

� �
� @L

@qj
¼ QNP

j þ kk
@gk

@ _qj

� �
ðnonholonomic equation of stateÞ; ð29Þ

are the equations of state for nonholonomic systems under
the general velocity constraints in Eq. (12). Equation (29) is
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identical with the equation of state derived previously29,30

from the application of Gauss’ principle to the general veloc-
ity constraints in Eq. (12). It covers all the previous equa-
tions of state. The conditions in Eq. (28) on dqj confirm that
the ideal constraint forces do no combined virtual work,
QC

j dqj ¼ kkð@gk=@ _qjÞdqj ¼ 0.

C. New transpositional relation for velocity constraints

Because Eqs. (23) and (28) are each zero, the quantity

dgk �
@gk

@ _qj
dqj

� �0
¼ 0 ðk ¼ 1; 2;…; cÞ; (30)

is also zero. Thus the basic relation, Eq. (17), provides the
set of c transpositional rules,

@gk

@ _qj

� �
d _qj � ðdqjÞ0
� 	

¼ gkjdqj: (31)

The time derivative ðdqjÞ0 therefore exists and Eq. (31)
shows how it is obtained from dqj and d _qj which, in turn, are
linked via Eq. (23). Equation (30) guarantees possible dis-
placed states.

For integrable constraints, gkjdqj vanishes30 and Eq. (31)
reduces to the traditional commutation rule, Eq. (19). For
non-integrable constraints, the transpositional relation in Eq.
(31), in contrast to the commutation rule, now guarantees
displaced states compatible with the constraints. Even
though the displaced states are now possible, it has been
shown30 that Eq. (31) also prevents the valid construction
of a constrained Hamilton principle for non-integrable con-
straints. The relation dg

ð1Þ
k ¼ �g

ð1Þ
kj dqj 6¼ 0 associated with

the traditional commutation rule, Eq. (19) offers the same
conclusion.1,3,15,30–36

Because Eq. (31) is a set of only c ¼ ðn� m) equations
for the n ¼ ðmþ cÞ unknown d _qj, we are at liberty to specify
that the commutation relation Eq. (19) is obeyed by the m-in-
dependent velocity displacements d _qi. Then Eq. (31) is
reduced to the set of c equations

Gkd d _qd � ðdqdÞ0
� 	

¼ gkjdqj Gkd ¼
@gk

@ _qd

� �
;

d ¼ mþ 1;mþ 2;…; n; (32)

for the c dependent velocity displacements, which are there-
fore given by the solution

d _qi � ðdqiÞ0 ¼ 0; ði ¼ 1; 2;…;mÞ (33a)

d _qd � ðdqdÞ0 ¼ ~Gdkgkjdqj; ðd ¼ mþ 1;mþ 2;…; nÞ;
(33b)

where the elements ~Gdk of the (c� c) inverse matrix ~G sat-
isfy ~GdkGkj ¼ ddj. These subrules in Eq. (33) based on Eq.
(31) show how to evaluate the independent and dependent
derivatives ðdqjÞ0 from dqj and d _qj. A geometrical interpreta-
tion of these rules provides further insight.30

V. GENERAL ACCELERATION CONSTRAINTS

As for the case of general velocity constraints, Eq. (12),
direct application of the d’Alembert-Lagrange principle,
Eq. (2), to systems under nonlinear kinematic constraints

hkð€q; _q; q; tÞ ¼ 0 ðk ¼ 1; 2;…; cÞ; (34)

with general acceleration-dependence, has also remained
elusive because the traditional methods for holonomic and
linear-velocity constraints cannot be implemented. The
change in the acceleration constraints due to the dq-displace-
ment is

dhk ¼
@hk

@€qj

� �
d€qj þ

@hk

@ _qj

� �
d _qj þ

@hk

@qj

� �
dqj: (35)

We have

@hk

@€qj
dqj

� �00
¼ @hk

@€qj

� �
dqj

� �00þ2
@hk

@€qj

� �0
ðdqjÞ0

þ @hk

@€qj

� �00
dqj; (36)

which, with the aid of Eq. (35), provides the basic transposi-
tional relation,

dhk �
@hk

@€qj
dqj

� �00
¼ @hk

@ _qj

� �
ðd _qj � ðdqjÞ0Þ þ

@hk

@€qj

� �

� ðd€qj � dqj

� �00Þ � Dhk; (37)

for acceleration constraints, where the end term is

Dhk ¼ 2
@hk

@€qj

� �0
� @hk

@ _qj

� �� �
ðdqjÞ0

þ @hk

@€qj

� �00
� @hk

@qj

� �� �
dqj: (38)

The meaning of Eq. (37), which is analogous to Eq. (17) for
velocity constraints, is made apparent for exact constraints
hk ¼ _gk when it is found that Dhk reduces to ðgkj dqjÞ0. Then
Eq. (37) is simply

d _gk �
@gk

@ _qj
dqj

� �00
¼ @ _gk

@ _qj

� �
ðd _qj � ðdqjÞ0Þ

þ @gk

@ _qj

� �
ðd€qj � ðdqjÞ00Þ � gkjdqj

� �0
; (39)

which is a higher-order version of Eq. (17). With the aid of
the identity,

@ _gk

@ _qj
¼ @gk

@ _qj

� �0
þ @gk

@qj
; (40)

we can also show that Eq. (39) minus the time derivative of
Eq. (17) provides the transpositional relation

d _gk � ðdgkÞ0 ¼
@gk

@qj

� �
ðd _qj � ðdqjÞ0Þ

þ @gk

@ _qj

� �
ðd€qj � ðd _qjÞ0Þ; (41)

which is the analogue of Eq. (18) for holonomic constraints.
Equations (17), (37), and (39) and Eqs. (18) and (41) are
members of two families30 of basic transpositional relations,
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valid for the functions fk, gk, and hk without any conditions
imposed. Other family members have recently been
obtained.30

A. Displacement conditions and equations of state

In a similar fashion to Eq. (22), use of the time derivative

_hk ¼
@hk

@€qj

� �
q
…

j þ
@hk

@ _qj

� �
€qj þ

@hk

@qj

� �
_qj þ

@hk

@t
¼ 0;

(42)

instead of the acceleration constraint, Eq. (34), automatically
guarantees possible displaced states, because it leads directly
to the correct condition

dhk ¼
@hk

@€qj

� �
d€qj þ

@hk

@ _qj

� �
d _qj þ

@hk

@qj

� �
dqj

¼ rQ hk � dQ ¼ 0; (43)

for possible states Q ¼ ðq; _q; €qÞ. In geometrical terms, Eqs.
(42) or (43) expresses the tangency condition that the dis-
placement dQ of the representative point Q is tangential to
the hk-surface and the displaced state therefore lies on the
acceleration constraint manifold hk. Partition the n states
with j ¼ 1; 2;…; n into m-independent states (qi; _qi), where
i ¼ 1; 2;…;m and c-dependent states (gd; _gd), where
gd ¼ qmþd and d ¼ 1; 2;…; c. The Eq. (42) decomposes
into

_hk ¼ Hkd g
…

d þ
@hk

@€qi

� �
q
…

i þ
@hk

@ _qj

� �
€qj

�

þ @hk

@qj

� �
_qj þ

@hk

@t

�
¼ 0; (44)

where Hkdðq; _q; €q; g; _g; €g; tÞ ¼ @hk=@€gdð Þ are the elements of
the matrix H ¼ fHkdg, assumed to be positive definite
(invertible). The solutions g

…
d of Eq. (44) are therefore

g
…

d ¼ � ~Hdr
@hr

@€qi

� �
q
…

i þ
@hr

@ _qj

� �
€qj þ

@hr

@qj

� �
_qj þ

@hr

@t

� �
;

(45)

where i ¼ 1; 2;…;m and j ¼ 1; 2;…; n, and where the ele-
ments ~Hdr of matrix ~H, the inverse of matrix H ¼ fHkdg,
satisfy Hkd

~Hdr ¼ dkr with d; r ¼ 1; 2;…; c: Although the co-
ordinate function gd ¼ gdðq; tÞ is unknown for the non-inte-
grable Eq. (34), the dependent displacements

dgd ¼
@gd

@qi

� �
dqi ¼

@ g
…

d

@ q
…

i

� �
dqi; (46)

may now be obtained in terms of the independent dqi from
Eq. (45) to give

dgd ¼ � ~Hdr
@hr

@€qi

� �
dqi: (47)

Multiplication by Hkd, followed by a d-summation, yields
the relation

@hk

@€qj

� �
dqj �

@hk

@€qi

� �
dqi þ

@hk

@€gd

� �
dgd ¼ 0;

ðj ¼ 1; 2;…; nÞ; (48)

where gd reverts back to its original qmþd. Equation (48)
obtained from the tangency condition, Eq. (43) is the
required set of linear conditions on the displacements to be
adjoined to the d’Alembert-Lagrange principle in Eq. (2) for
nonholonomic systems under general acceleration con-
straints in Eq. (34). On adjoining Eq. (48) to Eq. (2), the dqj

are effectively regarded as all free, so that

Lj ¼
d

dt

@L

@ _qj

� �
� @L

@qj
¼ QNP

j þ kk
@hk

@€qj

� �
;

ðnonholonomic equation of stateÞ (49)

are the equations of state for nonholonomic systems under
the general acceleration constraints in Eq. (34). Equation
(49) is identical to the equation of state derived30 from
Gauss’ principle and, with the aid of Eq. (22), it covers the
previous result in Eq. (29) for velocity constraints and all the
other equations of state. The restrictions Eq. (48) on dqj

ensure that the constraint forces do no combined virtual
work, QCdqj ¼ kkð@hk=@€qjÞdqj ¼ 0.

B. New transpositional relation for acceleration
constraints

Because Eqs. (43) and (48) are each zero, the quantity

dhk �
@hk

@€qj
dqj

� �00
¼ 0; (50)

is also zero. The basic expression, Eq. (37), then provides
the k ¼ 1; 2;…; c transpositional relations

@hk

@ _qj

� �
ðd _qj � ðdqjÞ0Þ þ

@hk

@€qj

� �
ðd€qj � ðdqjÞ00Þ ¼ Dhk;

(51)

for acceleration constraints. Because of Eqs. (43) and (48), use
of Eq. (51) implies that the displaced states are all possible.
Subrules analogous to Eq. (33) for velocity constraints can be
similarly deduced from Eq. (51) by taking d _qj ¼ ðdqjÞ0 for all
n velocity displacements and d€qi ¼ ðdqiÞ

00
only for the m

independent acceleration displacements with i ¼ 1; 2;…; m.
The c-dependent acceleration displacements then satisfy

d€qd � dqdð Þ
00
¼ ~HdkDhk; Hkd ¼

@hk

@€qd

� �
ðd ¼ mþ 1;mþ 2;…; nÞ; (52)

where ~HdkHkr ¼ ddr is satisfied by elements of the (c� c)
matrix ~H, the inverse of H.

VI. TEST CASE: THE NONHOLONOMIC PENNY

The theory we have developed has been tested by provid-
ing the correct physical solution of the Benenti problem
under the non-integrable quadratic velocity constraint in Eq.
(8). Consider the solution of the nonholonomic penny
obtained from the d’Alembert-Lagrange principle in Eq. (2)
and from Eq. (29) for general velocity constraints. In the roll-
ing and turning of a penny=thin disk along a two-dimen-
sional inclined plane, illustrated in Fig. 1, the penny of mass
M, radius R, and center of mass at (x; y; z) is initially placed
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upright at (x0; y0) and given both an initial velocity v0 to
begin rolling with angular speed _w0 ¼ v0=R about the ĵ-axis
of axial symmetry, and an angular speed _/0 ¼ x for turning
about the fixed figure axis k̂. The penny is constrained to
remain upright k̂ ¼ K̂ so that its center of mass coordinate
z¼R. The Lagrangian, in terms of the four generalized coor-
dinates (x; y;w;/), is

L ¼ 1

2
Mð _x2 þ _y2Þ þ 1

2
I2

_w2 þ 1

2
I3

_/2 þMgx sin a; (53)

where I2 ¼ bMR2 with b ¼ 1=2, and I3 are the moments of
inertia of the body about the symmetry and figure axes ĵ and
k̂, respectively. The penny’s angular velocity is X ¼ ð _wĵ
þ _/k̂Þ so that the instantaneous velocity vP of the point P of
contact is vP ¼ vþX� ð�Rk̂Þ, where v is the center of
mass velocity. The condition for rolling without slipping is
therefore

vP ¼ _xÎ þ _yĴ � ðR _wÞî ¼ 0: (54)

The components of vP along the fixed directions Î and Ĵ are

G1 ¼ _x� R _w cos / ¼ 0 (55a)

G2 ¼ _y� R _w sin / ¼ 0; (55b)

and are

g1 ¼ _x cos /þ _y sin /� R _w ¼ 0 (56a)

g2 ¼ _x sin /� _y cos / ¼ 0; (56b)

along the rotating directions îðtÞ ¼ ðÎ cos /þ Ĵ sin /Þ and
ĵðtÞ ¼ ð�Î sin /þ Ĵ cos /Þ shown in Fig. 1. Equations (55)
and (56) are non-integrable linear-velocity constraints. Equa-
tions (56a) and (56b) represent the rolling and knife-edge
(skater) constraints, respectively, where v remains directed
along the axis î knife-edge. The 2n� c ¼ 6 initial conditions
required for solution are (x0; y0; _w0 ¼ v0=R, _/0 ¼ x, and
w0 ¼ 0;/0 ¼ 0). Any of the constraints may be replaced by
the (î; ĵ)-components

_g1 ¼ ð€x cos /þ €y sin /Þ � R €w ¼ 0 (57a)

_g2 ¼ ð€y cos /� €x sin /Þ � R _w _/ ¼ 0 (57b)

of acceleration of the point P of contact. These will later
prove useful in the calculation of the forces of constraint in
Sec. VI A 1. Application of Eq. (49) for acceleration con-
straints to Eq. (57) yields results identical with those
obtained from Eq. (29) applied to Eq. (56), as expected,
because the displacement conditions Eqs. (28) and (48) coin-
cide for linear acceleration constraints.

Application of Eq. (29) to the homogeneous quadratic ve-
locity constraint

g
ð2Þ
1 ¼ ðg1Þ2 þ ðg2Þ2 ¼ _x2 þ _y2 � R2 _w2 ¼ 0; (58)

also yields results identical to those for the linear-velocity
case. Equation (58) is, however, not a true quadratic velocity
constraint because the tangency condition _g

ð2Þ
1 ¼ 0 reduces

to the original conditions _g1;2 ¼ 0 used to establish the
displacement conditions in Eq. (28). In contrast, the Benenti
constraint, Eq. (8), is locally written and cannot be reduced
to a simpler (linear-velocity) form.

A. Direct application of the d’Alembert-Lagrange
principle: Constraints embedded

The d’Alembert-Lagrange principle in Eq. (2) yields

Ljdqj ¼ Lxdxþ Lydyþ Lwdwþ L/d/ ¼ 0: (59)

The constraints in Eq. (55) can be readily embedded within
Eq. (59) by expressing the dependent displacements as
dx ¼ ðR cos /Þdw and dy ¼ ðR sin /Þdw. Then Eq. (59)
reduces to

½ðR cos /ÞLx þ ðR sin /ÞLy þ Lw�dwþ L/d/ ¼ 0; (60)

where dw and d/ are independent and arbitrary. The dis-
placed states are possible provided that the velocity displace-
ments obey the subrules, Eq. (33a), for the independent
displacements (dw; d/), and Eq. (33b), which provides

d _x� d

dt
ðdxÞ

� �
¼ R sin / _/dw� _wd/


 �
(61a)

d _y� d

dt
ðdyÞ

� �
¼ cos / _wd/� _/dw


 �
(61b)

for the dependent displacements dx; dy. Although linear-ve-
locity constraints in general cannot be embedded, both Lx

and Ly for a linear potential are not functions of the depend-
ent coordinates (x; y) so that embedding is possible. On cal-
culating Lj, Eq. (60) with the aid of Eq. (57a) yields the
equations of state

ð1þ bÞR €w ¼ ðg sin aÞ cos / (62a)

I2
€/ ¼ 0 (62b)

for the nonholonomic penny. The solution of Eq. (62) is that
the penny continues to turn counterclockwise with constant
angular velocity _/k̂ ¼ xk̂, and the center of mass has
velocity

vðtÞ ¼ R _wðtÞî ¼ ðv0 þ 4ax sin xtÞî (63)

Fig. 1. The penny rolls upright while turning on an inclined plane of angle

a. The directions of the space-fixed axes are Î, Ĵ, and K̂, as indicated. The

disk rolls along the plane with angular velocity _wĵ about the symmetry axis

ĵðtÞ, which turns with constant angular velocity _/k̂ about the fixed figure

axis k̂. The center of mass has velocity vðtÞ ¼ ½R _wðtÞ�îðtÞ. The point of con-

tact P is instantaneously at rest and provides the nonholonomic constraint

Eqs. (56).
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along î, where the radius

a ¼ g sin a
4x2ð1þ bÞ

� �
¼ gd

4x2
(64)

is determined by gd ¼ g sin a=ð1þ bÞ, the gravitational
downhill component g sin a offset by the uphill frictional
component bg sin a=ð1þ bÞ required for rolling downhill.
Because dî=dt ¼ xĵ, Eq. (63) provides the acceleration

_v ¼ ð4x2a cos xtÞ îþ x2ðR0 þ 4a sin xtÞ ĵ; (65)

where the radius

R0 ¼ v0

x
; (66)

is established by the initial conditions (v0;x). The con-
straints in Eq. (55) furnish, with the aid of Eq. (63), the
(Î; Ĵ)-components

_x ¼ v0 cos xtþ 2ax sin 2xt; (67a)

_y ¼ v0 sin xtþ 2axð1� cos 2xtÞ; (67b)

of the velocity. The speed _x directly down the plane is purely
oscillatory and averages to zero over the range 0 � t
� 2p=x, while the speed _y across the plane averages to
h _yi ¼ 2ax. Equation (67) yields dy=dx ¼ tan xt for the gra-
dient, in compliance with the knife-edge condition (56b).
The (x; y) coordinates of the contact point P (or the center of
mass) and the distance s ¼ Rw covered between (x0; y0) and
(x; y) for v � 0 are

xðtÞ � x0 ¼ að1� cos 2xtÞ þ R0 sin xt; (68a)

yðtÞ � y0 ¼ að2xt� sin 2xtÞ þ R0ð1� cos xtÞ; (68b)

sðtÞ ¼ v0tþ 4að1� cos xtÞ: (68c)

Limits: (a) For motion on a horizontal plane, a¼ 0, so that

xðtÞ � x0 ¼
v0

x


 �
sin xt (69a)

yðtÞ � y0 ¼
v0

x


 �
ð1� cos xtÞ: (69b)

The penny traces out the fixed circular path

ðx� x0Þ2 þ y� ðy0 þ
v0

x
Þ

h i2

¼ v0

x


 �2

; (70)

of fixed radius R0 ¼ ðv0=xÞ at fixed speed v0 with fixed cen-
ter at (x0; y0 þ v0=x), a standard result.17 Friction provides
the required centripetal force Mv2

0=R0 ¼ Mv0x toward the
fixed center.

(b) For zero initial speeds on an inclined plane, R0 ¼ 0,
and Eq. (68) reduces to the parametric equations for a
cycloid, which is the path of a point on the rim of a circle of
radius a which is rolling on the straight line x ¼ x0.

(c) For either spin-less motion x ¼ 0 or the limit
t	 2p=x for non-zero x, Eq. (68) reduces to xðtÞ
�x0 ¼ sðtÞ ¼ v0tþ 1

2
gdt2 and yðtÞ ¼ y0, as expected for rec-

tilinear motion under constant acceleration gd right down the
plane. More general and interesting orbits involve a mixture
of the cases (a) and (b) and are discussed in Sec. VI B.

1. The constraints: Frictional force and applied torque

The components (Fi;Fj) of the frictional constraint force
along î and ĵ may be determined either via Lagrange’s equa-
tions for adjoined constraints (Sec.VI B), or, more simply,
by comparing the solution Eq. (65) for the acceleration
obtained from constraints embedded in the d’Alembert-
Lagrange principle with Newton’s equation

M _v ¼ ðMg sin a cos xtþ FiÞ î

þ ð�Mg sin a sin xtþ FjÞ ĵ: (71)

This comparison provides both components

FiðtÞ ¼ �
b

1þ b

� �
Mg sin a cos xt; (72a)

FjðtÞ ¼ ðMg sin aÞ sin xtþMxðv0 þ 4ax sin xtÞ; (72b)

¼ Mx½v0 þ 4að2þ bÞx sin xt�: (72c)

The frictional component Fi acting at P is directed opposite
to the rolling motion along î and generates the torque along
the direction ĵ required for rolling along the perturbed
cycloid. It is oscillatory and averages to zero over the period
T ¼ 2p=x. Rolling rather than sliding always occurs, if the
coefficient of friction with the plane is greater than
bð1þ bÞ�1

tan a. The transverse frictional component Fj at P
is also oscillatory with an average of hFji ¼ Mxv0. The ra-
dius of curvature of the (x; y)-trajectory is

qðtÞ � ð _x
2 þ _y2Þ3=2

ð _x€y� €x _yÞ ¼ ðR
0 þ 4a sin xtÞ ¼ v

x


 �
; (73)

with the result that (72c) may be re-expressed as

FjðtÞ ¼
Mv2ðtÞ
qðtÞ þ ðMg sin aÞ sin xt: (74)

The frictional component Fj at P provides the required cen-
tripetal (inward) force ðMv2=qÞ ¼ Mxv for curved motion
and offsets the center of mass gravitational component along
�ĵ. Equation (72) may also be determined by comparing the
acceleration constraints, Eq. (57a), supplemented by (62a),
and Eqs. (57b) with (71), thereby highlighting the value of
utilizing constraint equations expressed in acceleration form.

In addition to supplying the centripetal force, the frictional
component, Fj, also generates a torque ðRFjÞî about the cen-
ter of mass, which will cause the penny to fall flat on its
face. A supporting counter-balancing torque Na must there-
fore be applied along î to ensure that the disk remains upright
and can be determined as follows. The angular momentum
about the center of mass is L ¼ ðI2

_wÞĵþ ðI3
_/Þk̂. Because

dĵ=dt ¼ �xî, the torque-angular momentum rule yields

_L ¼ �ðI2
_w _/Þîþ ðI2

€wÞĵþ ðI3
€/Þk̂

¼ ðNa þ RFjÞî� ðRFiÞĵ; (75)

where Fi;j are the frictional components given in Eq. (72).
Hence, I2

€w ¼ RFi and I3
€/ ¼ 0, in expected agreement with

Eq. (62), supplemented by (72a). Also, Na ¼ �ðI2
_w _/þ RFjÞ

is the torque applied about the center of mass to keep the
penny upright. Then
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Na î¼�Mð1þbÞxRðv0þ 8axsinxtÞî¼�2bFa î (76)

is the applied oscillatory torque with the average value
�Mð1þ bÞxRv0. This torque, directed along �î opposite to
the motion, may be supplied via a force couple Faĵ and �Faĵ
acting, respectively, at fixed points ðR6bÞk̂ on the penny.

B. Equations of state with adjoined constraints and
physical motion

When the constraints are expressed as Eqs. (56b) and (58),
they can be adjoined to Eq. (2) via the method developed in
Sec. IV. From Eq. (29) for general velocity constraints, the
equations of state are

M€x ¼ Mg sin aþ 2k1 _xþ k2 sin / ¼ Mg sin aþ Fx (77a)

M€y ¼ 2k1 _y� k2 cos / ¼ Fy (77b)

I2
€w ¼ �2k1R2 _w ¼ Nj (77c)

I3
€/ ¼ 0; (77d)

where Fx;y are the frictional components along the fixed
directions Î and Ĵ and Nj ¼ RFi is the frictional torque along
ĵ required for rolling. The solution of Eq. (77) reproduces the
orbit, Eq. (68), and provides the multipliers k1;2, from which
the frictional components Fi ¼ ðFx cos /þ Fy sin /Þ ¼ 2k1 _x
and Fj ¼ ð�Fx sin /þ Fy cos /Þ ¼ �k2 along î and ĵ are
directly determined. They are in agreement with those in
Eq. (72). On introducing the inclination angle h that the sym-
metry axis ĵ of the penny makes with the fixed axis K̂,
a more complicated Lagrangian L involving five generalized
coordinates (x; y;w;/; h) was constructed. The resulting
five equations of state with the constraints Eqs. (56b), (58),
and h ¼ p=2 adjoined by the multipliers k1;2;3 reproduce Eq.
(77) together with the additional equation ðI2

_w _/Þ ¼ �k3

¼ �ðNa þ RFjÞ, where k3 is the torque in the direction ĵ.
The torque Na applied to keep the penny upright agrees with
Eq. (76) obtained from the Newtonian analysis.

The virtual work performed by the constraints is

QC
j dqj ¼ 2k1ð _xdxþ _ydy� R2 _wdwÞ

þ k2ðsin /dx� cos /dyÞ; (78)

which, with the aid of Eqs. (56b) and (58) reduces to zero, as
required for ideal constraints.

The orbit and physical motion. The orbit of the contact
point P is given by Eq. (68) which, in terms of the turning
angle / ¼ xt, has the parametric form

xð/Þ ¼ að1� cos 2/Þ þ R0 sin / (79a)

yð/Þ ¼ að2/� sin 2/Þ þ R0ð1� cos /Þ (79b)

sð/;/1Þ ¼ R0ð/� /1Þ þ 4aðcos /1 � cos /Þ; (79c)

with respect to an origin centered at the initial starting point
(x0; y0). For turning and rolling motion about the penny’s fig-
ure and symmetry axes k̂ and ĵ, the orbits will vary in size
and shape according to the parameters a ¼ gd=4x2 and
R0 ¼ v0=x established by the initial conditions. When R0 ¼ 0
and a > 0, the orbit is a cycloid. When a¼ 0, the motion is
on a horizontal plane and the orbit for non-zero v0 is the
circle of Eq. (70) with fixed radius R0 ¼ v0=x. As R0 is

increased from zero, the paths for non-zero a range from
cycloids perturbed by additional circular motion to circles
perturbed by cycloidal motion. The orbit may also be repre-
sented by

ðx� aÞ2 þ ½y� ðR0 þ 2a/Þ�2 ¼ R0
2 þ 2aR0 sin /þ a2

(80)

which is a path of a point of the rim of a circle, whose center
(a;R0 þ 2a/) moves along x¼ a at constant speed _y ¼ 2ax
and whose radius varies between jR0 � aj and ðR0 þ aÞ.
When viewed in a frame moving with speed _y ¼ 2ax, the
orbit convolutes to the closed orbit

ðx� aÞ2 þ ðy� R0Þ2 ¼ R0
2 þ 2aR0 sin /þ a2: (81)

The general orbit Eq. (79) can also be expressed in terms of
the path-length (68c) as

ð4aþ R0/Þ � s½ �2¼ 8a ð2aþ R0 sin /Þ � x½ �: (82)

Equations (79)–(82) facilitate analysis of the featured orbits.
The following five cases, each characterized by an

increase in the initial velocity v0, emerge naturally and are
illustrated in Figs. 2 and 3 for various values of R0=a
¼ v0=ðxaÞ. Equation (63) shows that the rolling motion can
be forward or backward when R0 < 4a and that it is only for-
ward for R0 � 4a. By obeying the knife-edge condition,
(56b), the gradients dy=dx ¼ tan / remain the same for all
orbits at a fixed u. The patterns for all cases have a period of
/ ¼ 2p. Animations of the motion along each trajectory are
also presented in the online publication.

Case 1. R0 ¼ 0, that is, v0 ¼ 0. The penny rolls from rest
down the hill, constantly turning counterclockwise with con-
stant angular velocity x and traces out the orbit

xð/Þ ¼ að1� cos 2/Þ (83a)

yð/Þ ¼ að2/� sin 2/Þ (83b)

ð4a� sÞ2 ¼ 8að2a� xÞ; (83c)

which are the parametric equations for the cycloid shown in
Fig. 2(a). An equivalent expression for the cycloid is

ðx� aÞ2 þ ðy� 2a/Þ2 ¼ a2; (84)

which is the path traced by a point on the rim of a circle of
fixed radius a which rolls on the straight line x¼ 0 and
whose center moves along x¼ a at constant speed _y ¼ 2ax.
In the moving frame, Eq. (84) is a fixed circle of radius a. At
/ ¼ p=2, the penny reaches the cycloid minimum at
xðp=2Þ ¼ 2a with maximum speed vmax ¼ 4ax. It then rolls
uphill with a constant turning (spinning) rate x, until at
/ ¼ p, it comes to rest at its initial level x0 ¼ 0, but it is dis-
placed sideways by yðpÞ ¼ 2pa at the cusp. Although instan-
taneously at rest at / ¼ p, it has an acceleration downhill so
that it rolls backward while turning along the second seg-
ment p � / � 2p of the cycloid, until its motion is again
reversed at / ¼ 2p. The pattern is repeated continually, with
reversals in rolling occurring between each successive seg-
ments, np � / � ðnþ 1Þp. The segments n ¼ 1; 3; 5…; are
“reversal” lanes, where _w < 0, in contrast to the forward
lanes, n ¼ 0; 2; 4… where _w > 0. The forward and backward
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lanes are identical in size and the length of each lane (seg-
ment of the cycloid) is s ¼ 8a with enclosed area 3pa2. The
orbit in Fig. 2(a) always oscillates with x between 0 and 2a
and the horizontal distance covered by each oscillation is
DY ¼ 2pa. For large initial rates x of spinning, the range
decreases as 2a ¼ gd=2x2 and the oscillations in time with
period p=x become increasingly rapid and less perceptible
to the eye so that the averaged orbital velocity is zero and
the penny appears to move horizontally along the line
hxi ¼ a ¼ gd=4x2 across the plane at constant drift speed
h _yi ¼ 2ax ¼ gd=2x.

Case 2. 0 < R0 < 4a, that is, the averaged orbital velocity
hvi ¼ v0 < 4ax ¼ 2h _yi. As the initial speed v0 increases
from zero, the R0-circular terms in Eq. (79) perturb the cy-
cloidal orbit. The penny starts with velocity v0 Î, and rolls
along the circularly-expanded cycloid, and reaches the pri-
mary minimum at xþ ¼ xðp=2Þ ¼ 2aþ R0, at maximum
speed vþ ¼ v0 þ 4ax. On its uphill journey, it passes its ini-
tial horizontal level x0 ¼ 0 where / ¼ p at speed v0 and pen-
etrates into the uphill region x < 0, shown in Fig. 2(b). The
penny then stops instantaneously at xrestð/1Þ ¼ �R02=8a,
where /1 ¼ pþ c with c ¼ sin�1ðR0=4aÞ < p=2. The penny
then proceeds to roll backward along a much smaller second-
ary segment to reach a secondary minimum at x� ¼ xð3p=2Þ
¼ 2a� R0, at speed v� ¼ jv0 � 4axj. The rolling backward
ceases at /2 ¼ 2p� c where the penny stops instantaneously
and proceeds to roll forward down to its initial level x0 at

/ ¼ 2p. The downhill range DX ¼ xþðp=2Þ � xrestð/1Þ
¼ 2aþ R0 þ R02=8a increases with R0.

Reversals in rolling always occur between the f0;/1g for-
ward and f/1;/2g reverse lanes which, in contrast to Case
1, now differ in size. The distances covered in the various
segments are

sð0; pÞ ¼ pR0 þ 8a (85a)

sðp;/1Þ ¼ sð/2; 2pÞ ¼ cR0 � 4að1� cos cÞ (85b)

sð/1;/2Þ ¼ 8a cos c� ðp� 2cÞR0 (85c)

sðp; 2pÞ ¼ ð4c� pÞR0 þ 8að2 cos c� 1Þ: (85d)

The reverse lane f/1;/2g is traveled at reduced speeds and
is therefore much shorter than that for the pure cycloid, as in
Figs. 2(b) and 2(c). The ratio of the line element ds to that
for the pure cycloid is 1þ R0=ð4a sin /Þ. Expansion of ds
therefore occurs in the f0; pg segment while contraction
occurs in the fp; 2pg segment. For higher v0, the expansion
and contraction each become more pronounced, as shown by
comparing Figs. 2(b) and 2(c). The initial level x0 is crossed
at / ¼ np for all R0. When R0 < 2a, there are additional
crossings at /3 ¼ ½pþ sin�1ðR0=2aÞ� and /4 ¼ ½2p� sin�1

ðR0=2aÞ�. When R0 ¼ 2a, these additional crossings converge
to 3p=2; 7p=2; :: and produce the minima at x0 ¼ x�, as
shown in Figs. 2(b). For 2a < R0 < 4a, these minima rise to

Fig. 3. Continuation of Fig. 2 for the nonholonomic penny rolling and turn-

ing along orbits Eq. (79) on an inclined plane. Coordinates are now

x=R0; y=R0. Orbits (a)–(d) represent increasing values of v0=xa ¼ R0=a ¼ (a)

12, (b) 24, (c) 48, (d) 96, and / � 21p. They are mainly cycloidal-perturbed

circles with centers moving adiabatically with respect to more-rapid circular

motion. The minima and maxima are at ð1þ 2a=R0Þ and �ð1� 2a=R0Þ,
respectively. They are mainly circles with moving centers (enhanced

online). [URL:http://dx.doi.org/10.1119/1.3563538.6]; [URL:http://dx.doi.

org/10.1119/1.3563538.7]; [URL:http://dx.doi.org/10.1119/1.3563538.8]

[URL: http://dx.doi.org/10.1119/1.3563538.9]

Fig. 2. Nonholonomic penny rolling and turning upright along orbits

Eq. (79) on an inclined plane. Coordinates are x=a; y=a. Orbits (a)–(e) repre-

sent increasing values of v0=xa ¼ R0=a ¼ (a) 0, (b) 2, (c) 3, (d) 4, and (e) 6.

They are mainly circularly-expanded cycloids (enhanced online). [URL:

http://dx.doi.org/10.1119/1.3563538.1]; [URL:http://dx.doi.org/10.1119/

1.3563538.2]; [URL:http://dx.doi.org/10.1119/1.3563538.3]; [URL:http://dx.

doi.org/10.1119/1.3563538.4]; [URL:http://dx.doi.org/10.1119/1.3563538.5]
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x� ¼ �ðR0 � 2aÞ < 0 and the additional crossings disappear.
The reversal f/1;/2g lane is maintained for R0 < 4a. The
above patterns and angles / ¼ ð0; p;/1;/2;/3;/4; 2p) have
period 2p.

Case 3. R0 ¼ 4a, that is, hvi ¼ v0 ¼ 2h _yi. As R0 increases
to 4a, /1;2 ! 3p=2, sð/1;/2Þ ! 0, sð0; pÞ ¼ pR0 þ 8a
¼ 4aðpþ 2Þ, sðp; 2pÞ ¼ pR0 � 8a ¼ 4aðp� 2Þ and sð0; 2pÞ
¼ 2pR0. The maxima at f/1;/2g in Figs. 2(b) and 2(c) have
now combined into one maxima at x�ð3p=2Þ ¼ �ðR0 � 2aÞ
¼ �2a and y�ð3p=2Þ ¼ R0 þ 3pa where both vrest and _vrest

are zero, as shown in Fig. 2(d). The reversal lanes have dis-
appeared, and the motion is continuous. The penny stops mo-
mentarily at the maximum, but it keeps turning
counterclockwise at angular speed x, thereby picking up
acceleration, which enables it to roll and turn down the hill
until it reaches the minimum at xþ ¼ R0 þ 2a ¼ 6a, as dis-
played in Fig. 2(d). This case marks the onset of “looping-
the-loop” where, in contrast to Figs. 2(b) and 2(c) for
R0 < 4a, xð2pÞ < xðpÞ for R0 � 4a. Also the mean orbiting
velocity hvi ¼ v0 has increased to twice the drift speed
h _yi ¼ 2ax.

Case 4. R0 > 4a, that is, hvi ¼ v0 > 2h _yi. The velocity is
now always positive. The penny has initial rolling speed
sufficiently high to keep rolling at the highest level x�
¼ x½ð3=2þ 2nÞpÞ� ¼ �ðR0 � 2aÞ without stopping down to
the lowest level xþ ¼ x½ð1=2þ 2nÞpÞ� ¼ R0 þ 2a, as dis-
played in Figs. 2(e) and 3(a)–3(d). The range covered down-
hill is, DX ¼ 2R0 ¼ 2v0=x, independent of gravity and
depends only on the initial conditions. Succeeding maxima
and minima are separated by DY ¼ 4pa, which is independ-
ent of v0. The lower segment f0; pg has path length sð0; pÞ
¼ ðpR0 þ 8aÞ, which is greater than sðp; 2pÞ ¼ ðpR0 � 8aÞ
for the upper segment fp; 2pg. Also, s(0,2p)¼ 2pR0.

Case 5. R0 
 4a, that is, hvi ¼ v0 
 2h _yi. With further
increase in R0, the circular terms now increasingly dominate
the a-cycloid gravitational terms in Eq. (79) as illustrated in
Figs. 3(a)–3(d), where the orbits become more circular and
“slinky” in character. For R0 
 a, the orbit Eq. (79) tends to

xð/Þ ¼ aþ R0 sin /; (86a)

yð/Þ ¼ 2a/þ R0ð1� cos /Þ; (86b)

which are the parametric equations for a prolate (extended)
cycloid (with R0 � 2a), which is the path of a point at dis-
tance R > a from, and rigidly connected to, the center of a
circle of radius a which is rolling on the straight line x¼ 0.
The orbit Eq. (80) also tends to

½x� a�2 þ ½y� ðR0 þ 2a/Þ�2 ¼ R0
2
; (87)

which is a circle of fixed radius R0 ¼ v0=x, whose center
(a;R0 þ 2a/Þ moves adiabatically with respect to the circular
speed v0 along the y-axis at constant speed _y ¼ 2ax	 v0, the
root cause of the “slinky” behavior. The path lengths (pR068a)
of each successive segments f0; pg and fp; 2pg approach pR0.
It is only when a ¼ gd=4x2 ! 0 that the center’s speed 2ax
reduces to zero and the circles of Fig. 3(d) eventually coalesce
to one fixed circle of constant radius R0 ¼ ðv0=xÞ. In this limit
Eq. (87) reduces to the appropriate result Eq. (70) for upright
spinning motion on a horizontal plane.

A remarkable property of all the orbits displayed in Figs.
2 and 3 is that each trajectory, when averaged over a full pe-
riod 2p=x in t, or 2p in u is along the same horizontal line

hxi ¼ a ¼ gd=4x2 across the plane at constant mean speed
h _yi ¼ 2ax ¼ gd=2x, irrespective of v0. On average, the
penny does not roll further down the plane past a. Also, as x
increases, the oscillations in x become so rapid that the
penny is perceived to move along x ¼ a ¼ gd=4x2 at con-
stant speed 2ax. The distance between the minima of Figs.
2(b) and 2(c) and the minima and maxima of the remaining
orbits is the range of DX ¼ 2R0 ¼ 2v0=x, which is unaf-
fected by gravity, depending only on the initial conditions.
The separation DY ¼ 4pa between the succeeding maxima
(and minima) depends on gravity and is independent of v0.

Ice skater=snowboarder on inclined plane. If there is no
rolling but only sliding, only three generalized coordinates
(x; y;/), constrained only by the “knife-edge” condition,
(56b), are needed. Examples are an ice skater or a plate with
center of mass located at the knife-edge. Neimark has pro-
vided the solution for the v0 ¼ 0 case.19 The solution for
general v0 can be determined ab-initio from Eq. (29) or
deduced simply by setting the inertia coefficient b ¼ 0 in the
general solution of Sec. VI A for the nonholonomic roll-
ing=turning penny. The orbit is given by Eq. (68), but with
aðb ¼ 0Þ ¼ a0 ¼ g sin a=4x2 while R0 ¼ v0=x. The skater
begins with velocity v0Î, keeps turning at the initial turning
rate x, and then traces out the various cycloid=circle combi-
nations, as displayed in Figs. 2–4, with speed vðtÞ ¼ v0

þ 4a0x sin xt along the path sðtÞ ¼ v0tþ 4a0ð1� cos xtÞ.
As v0 increases up to 4a0x, the skater traces out orbits with
primary and secondary minima separated by 2R0, as in Figs.
2(a)–2(c), and the downhill X-range is DX ¼ 2a0 þ R0

þR02=8a0. When v0 � 4a0x, “looping-the-loop” between
minima and maxima separated by DX ¼ 2R0 ¼ 2v0=x, the
range downhill, are also displayed, as in Figs. 2(d) and 2(e)
and Fig. 3. The downhill length of the inclined plane must be
greater than DX for the full orbits to be traversed. On aver-
age, the skater follows the horizontal line hxi ¼ a0 across the
plane at constant speed h _yi ¼ 2a0x, irrespective of v0.

The force actuating the knife-edge constraint, (56b), is the
sideways friction (72c) acting at P along ĵ, transversely to
the skating direction î. This sideways friction force, fully off-
sets the transverse component �ðMg sin a sin /Þĵ of gravity
at the center of mass and also supplies the centripetal force
mv2=q, where the radius of curvature is v=x. When starting
from rest, v0 ¼ 0, the overall distance for one cycloidal seg-
ment is 8a0 traveled in the time T ¼ p=x ¼ 2pða0=
g sin aÞ1=2

, and each segment encloses an area 3pa2 with the

Fig. 4. Schematic of skater sliding and turning along a prolate cycloid on an

inclined plane with speed vðtÞ ¼ v0 þ 4a0x sin xt, where v0 > 4a0x is the

initial speed, x is the constant frequency for angular turning, and

a0 ¼ g sin a=4x2. On average, the skater follows the horizontal line hxi ¼ a
across the plane at constant speed h _yi ¼ 2a0x, irrespective of v0.
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line x ¼ x0. Note that the skater may start from rest at any
point along the pure cycloid and the travel time from initial
rest to the final rest positions remains fixed at T, an interest-
ing illustration of the tautochrone problem of finding the
path, the cycloid ð4a� sÞ2 ¼ 8að2a� xÞ, down which a
bead placed at rest anywhere will fall to the bottom and up
again in the same amount of time.

Cart Wheels. The solution39 for an assembly of two identi-
cal thin wheels with centers joined by a uniform axle is iden-
tical with that for the nonholonomic penny, but with
gd ¼ g sin a=ð1þ 2bÞ. The present general solution shows
that the cart’s center of mass at the center of the axle follows
the orbits displayed in Figs. 2 and 3. This assembly may
therefore be used to demonstrate the motion of the penny
kept upright by the applied torque, Eq. (71).

The solution, Eq. (68), for the nonholonomic penny on an
inclined plane is quite general with various applications. The
five cases studied above provide an instructive and interest-
ing case study, which has not been previously discussed in
the literature.

VII. SUMMARY

We have shown how the elusive problem of utilizing the
d’Alembert-Lagrange principle for nonholonomic con-
straints Eqs. (12) and (34) with general dependence on veloc-
ity and acceleration can be solved. The property of possible
displaced states compatible with general velocity and accel-
eration constraints allows us to provide a set of linear condi-
tions on the virtual displacements required for adjoining to
the d’Alembert-Lagrange equation. We then derived equa-
tions of state, Eqs. (29) and (49), for dynamical systems
under general velocity and acceleration constraints, Eqs. (12)
and (34), respectively. These equations of state agree with
those obtained30 from Gauss’ principle. The nonholonomic
displacement conditions imply new transpositional relations
that differ from the commutation rule traditionally accepted
in Lagrangian dynamics.

The theory was tested by considering the non-integrable
quadratic constraint Eq. (8). Solutions for the nonholonomic
penny on an inclined plane were also obtained by embed-
ding the linear-velocity constraints in the d’Alembert-
Lagrange principle, as in Sec. VI A, to be tested with those
obtained from quadratic velocity and acceleration forms of
the original linear-velocity constraints in Eqs. (29) and (49)
appropriate to general nonholonomic adjoined constraints.
The geometric orbits of the nonholonomic penny for vari-
ous initial velocities were found to exhibit interesting and
instructive features. It is hoped that the present paper will
serve as a welcome addition to the literature of nonholo-
nomic systems.
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